

Journal of Organometallic Chemistry 525 (1996) 199-205

Zur Reaktion von 1,1'-Bis(alkylaminomethylen) ferrocenen mit Benzoylisothiocyanat

Rainer Richter^a, Oliver Seidelmann^a, Lothar Beyer^{a,*}, Herbert Plenio^b

^a Universität Leipzig, Institut für Anorganische Chemie, Talstraße 35, D-04103 Leipzig, Deutschland
^b Universität Freiburg, Institut für Anorganische und Analytische Chemie, Albertstraße 21, D-79104 Freiburg, Deutschland

Eingegangen 26 März 1996

Abstract

The reaction of 1,1'-bis("butylaminomethylene)ferrocene with two equivalents of benzoyl isothiocyanate yields 1,1'-ferrocenediylbis(N-methylene-N-"butyl-N'-benzoyl thiourea). In contrast, the respective reaction with 1,1'-bis(ethylaminomethylene)ferrocene leads to 2-N-ethylammonium-[3]-1,1'-ferrocenophane thiocyanate. Both compounds are characterized by X-ray structure determination. A possible reaction mechanism is discussed.

Zusammenfassung

Die Reaktion von 1,1'-Bis("butylaminomethylen)ferrocen mit zwei Äquivalenten Benzoylisothiocyanat führt erwartungsgemäß zum 1,1'-Ferrocendiyl-bis(N-methylen-N-"butyl-N'-benzoylthioharnstoff). Im Gegensatz dazu ergibt die entsprechende Umsetzung mit 1,1'-Bis(ethylaminomethylen)ferrocen unerwarteterweise die Verbindung 2-N-Ethylammonium-[3]-1,1'-ferrocenophan-thiocyanat. Beide erhaltenen Verbindungen werden durch Röntgenkristallstrukturanalyse charakterisiert. Der mögliche Reaktionsmechanismus wird diskutiert.

Keywords: Ferrocene; Ferrocenophane; Thiourea; Crystal structure; Thiocyanate

1. Einführung

Die Synthese von Ferrocenderivaten mit chelatbildenden Ankergruppen beansprucht wegen des Zugangs zu homo- und heteronuklearen Metallkomplexen besonderes Interesse [1-4]. Unter diesem Aspekt berichteten wir über N,N-disubstituierte N'-Ferrocenoylthioharnstoffe und deren Innermetallchelate mit verschiedenen 3d-Metallionen [5,6] sowie über 1,1'-Ferrocendiyl-bis(carbonsäure-N,N-diethyl-thioureid) und dessen Nickel(II)- und Kupfer(II)komplexe [6].

Während diese Verbindungen den Ferrocenrest an der Acylseite des Acylthioharnstoffs tragen (Typ I), werden im folgenden Ergebnisse zur Synthese und Molekülstruktur von Verbindungen mitgeteilt, bei denen der Ferrocenrest an der Thioamidseite des Thioharnstoffs gebunden ist (Typ II mit n = 1).

Bei diesen Untersuchungen kamen 1,1'-Bis(alkylaminomethylen)ferrocene zum Einsatz, die bei der Reaktion mit Benzoylisothiocyanat in Abhängigkeit vom Alkylrest R("But bzw. Et) unerwarteterweise zu unterschiedlichen Produkten führten.

^{*} Corresponding author.

⁰⁰²²⁻³²⁸X/96/\$15.00 Copyright © 1996 Elsevier Science S.A. All rights reserved. ?// S0022-328X(96)06502-3

2. Ergebnisse

2.1. Reaktion von 1,1'-Bis("butylaminomethylen)ferrocen mit Benzoylisothiocyanat

Bei der Umsetzung von 1,1'-Bis("butylaminomethylen)ferrocen 1 mit zwei Äquivalenten Benzoylisothiocyanat in trockenem Aceton wird erwartungsgemäß [7] 1,1'-Ferrocendiyl-bis(N-methylen-N-"butyl-N'-benzoylthioharnstoff) 1a erhalten, der sich bei der säulenchromatographischen Reinigung problemlos von in geringer Menge entstandenen Polymerisationsprodukten des Benzoylisothiocyanats abtrennen läßt.

Die Struktur der Verbindung 1a wurde mittels Röntgenkristallstrukturanalyse bestimmt. Abb. 1 zeigt die Molekülstruktur von 1a.

Die Atomkoordinaten sind in Tabelle 1 und ausgewählte Abstände und Winkel in Tabelle 2 zu finden.

In der Verbindung 1a sind die Cp-Ringe des Ferrocenfragments parallel angeordnet (Winkel zwischen den Cp-Ring-Ebenen 0,5°). Der Winkel am Fe-Atom zu den Mittelpunkten der beiden Cp-Ringe beträgt 179,2°. Die

Abb. I. Molekülstruktur von 1a.

Fabelle 1							
Atomkoordinaten und a	iquivalente	isotrope	Tem	peraturfak	oren	für	la

		aqui alcine iso	uepe rempetu	
Atom	x	у	t	$U_{eq}(Å^2)$ •
Fel	0,77705(5)	0,93533(5)	0,48091(5)	0,0472(2)
CII	0,9138(2)	0,6231(2)	0,2442(1)	0,1044(6)
C12	1,1334(3)	0,5311(3)	0,1023(4)	0,2536(23)
S1	0,4395(1)	1,2812(1)	0,6143(1)	0,0675(4)
S2	0,6849(2)	1,5209(1)	0,1648(1)	0,0781(4)
01	0,3307(3)	1,0282(3)	0,8382(3)	0,0702(9)
O2	0,8922(3)	1,3056(3)	0,3506(3)	0,0700(9)
N1	0,3777(3)	1,2013(3)	0,8114(3)	0,0487(9)
N2	0,5733(3)	1,1093(3)	0,7290(2)	0,0505(9)
N3	0,7030(3)	1,4279(3)	0,3497(3)	0,0487(9)
N4	0,7001(3)	1,2951(3)	0,2704(2)	0,0457(8)
Cl	0,4700(4)	1,1906(4)	0,7203(3)	0,0498(10)
C2	0,3092(4)	1,1206(4)	0,8626(3)	0,0489(10)
C3	0,2104(4)	1,1497(4)	0,9530(3)	0,0498(10)
C4	0,2199(4)	1,2110(4)	1,0101(3)	0,0551(11)
C5	0,1289(5)	1,2300(4)	1,0973(4)	0,0700(14)
C6	0,0271(5)	1,1885(5)	1,1249(4)	0,0833(17)
C7	0,0170(5)	1,1279(6)	1,0686(5)	0,0949(20)
C8	0,1081(5)	1,1071(5)	0,9828(4)	0,0733(14)
C9	0,5987(4)	1,0406(4)	0,8255(3)	0,0559(11)
C10	0,6334(5)	1,1127(5)	0,8711(4)	0,0761(15)
CII	0,7504(6)	1,1468(6)	0,8134(5)	0,0919(18)
C12	0,7868(7)	1,2086(6)	0,8650(5)	0,1070(22)
C13	0,6756(4)	1,0860(4)	0,6397(3)	0,0563(11)
C14	0,6872(4)	0,9728(3)	0,6160(3)	0,0477(10)
C15	0.6063(4)	0,9546(4)	0,5785(4)	0,0594(12)
C16	0,6509(5)	0,8382(4)	0,5615(4)	0,0735(15)
C17	0,7597(5)	0,7833(4)	0,5910(4)	0,0742(16)
C18	0,7829(4)	0,8642(4)	0,6252(3)	0,0620(12)
C19	0.6988(4)	1,4056(4)	0,2652(3)	0,0474(10)
C20	0,8014(4)	1,3756(4)	0,3885(3)	0,0504(10)
C21	0,7867(4)	1,4088(3)	0,4796(3)	0,0505(10)
C22	0.6727(5)	1,4491(4)	0,5426(4)	0,0652(13)
C23	0,6639(7)	1,4759(6)	0,6283(4)	0,0876(18)
C24	0,7659(9)	1,4637(6)	0.6511(5)	0.0956(21)
C25	0.8786(7)	1,4238(6)	0.5884(6)	0,0942(20)
C26	0,8906(5)	1,3950(5)	0.5039(5)	0,0749(15)
C27	0,6895(4)	1,2684(4)	0,1861(3)	0,0550(11)
C28	0,5567(5)	1,2976(5)	0,1879(4)	0,0769(15)
C29	0,5447(7)	1,2874(6)	0,0956(5)	0,1036(22)
C30	0,4176(9)	1,3204(11)	0,0960(9)	0,1838(48)
C31	0.6832(4)	1,1997(3)	0,3653(3)	0,0464(9)
C32	0,7795(4)	1,0846(4)	0,3641(3)	0,0488(10)
C33	0,8858(4)	1,0484(4)	0.3974(4)	0.0583(12)
C34	0,9489(5)	0,9278(5)	0.3873(4)	0,0813(18)
C35	0,8845(6)	0,8916(5)	0,3496(4)	0,0844(18)
C36	0,7792(5)	0,9852(4)	0,3356(4)	0,0687(14)
C37	0,9867(7)	0,5504(8)	0,1503(6)	0,1274(28)

⁺ U_{eq} ist definiert als 1/3 der Spur des orthogonalisierten U_{ef} -Tensors.

Cp-Ringe sind um 24.8° gegenüber der ekliptischen Anordnung verdreht. Die Seitenketten gehen von in der Projektion senkrecht zu den Ringen benachbarten C-Atomen der beiden Ringe ab und schließen einen Winkel von 46.8° ein.

Alle Fe1– C_{Cp} -Abstände (2,028–2,051 Å) können als gleichlang betrachtet werden. Die Substituenten an den

beiden Cp-Ringen weisen in entgegengesetzte Richtungen und weichen damit sterischem Zwang weitgehend aus. Beide Acylthioharnstoff-Fragmente liegen in E,Z'-Konfiguration vor. Die relevanten Torsionswinkel haben folgende Werte: S1C1N1C2 103,6°, O1C2N1C1 7,2° bzw. S2C19N3C20 – 118,3°, O2C20N3C19 0,0°. Die Konfiguration entspricht damit derjenigen der N,N-dialkylierten N'-Benzoylthioharnstoffe [8].

In den Acylthioharnstoff-Fragmenten werden die erwarteten Bindungslängen gefunden. Die Bindungen N2-C1 (1,319 Å) bzw. N4-C19 (1,329 Å) haben Doppelbindungscharakter, was eine Verlängerung der Bindungen N1-C1 (1,421 Å) bzw. N3-C19 (1,401 Å) gegenüber den Bindungen N1-C2 (1,367 Å) bzw. N3-C20 (1,378 Å) nach sich zieht. Die S-C-Bindungen S1-C1 (1,671 Å) bzw. S2-C19 (1,680 Å) liegen zwischen S-C-Einfach- und -Doppelbindung, während die O-C-Bindungen O1-C2 (1,223 Å) bzw. O2-C20 (1,218 Å) Doppelbindungen sind.

Im Kristall existieren relativ kurze intermolekulare N-H···S-Kontakte: N1-H1···S2[1 - x,3 - y,1 - z] mit N···S 3,340(4) Å, H···S 2,57(5) Å, N-H···S 153(3)° und N3-H3···S1[1 - x,3 - y,1 - z] mit N···S 3,508(4) Å, H···S 2,71(5) Å, N-H···S 173(4)°, die jedoch zu lang sind, um als intermolekulare Wasserstoffbrücken interpretiert zu werden [9].

Das in die Kristallstruktur eingeschlossene Methylenchlorid-Molekül bildet keine Wasserstoffbrücken.

Tabelle 2				
Ausgewählte	Abstände (Å) und	Winkel (°) in	la

E.			
Fel=Cpl '	1,644(5)	Fel-Cp2 .	1,643(5)
Fel-C _{Cp}	2,028(5)-2,051(5)	Cp1 * Cp2 *	3,287(6)
C _{Ca} C _{Ca}	1,217(6)		
SÎ-CI	1,671(4)	S2-C19	1,680(4)
01-C2	1,223(5)	O2-C20	1,218(5)
NI-CI	1,421(5)	N3=C19	1,401(5)
N1-C2	1,367(5)	N3-C20	1,378(6)
N2C1	1,319(5)	N4-C19	1,329(5)
N2-C9	1,476(5)	N4-C27	1,464(5)
N2-C13	1,481(5)	N4-C31	1,491(5)
C2-C3	1,492(6)	C20-C21	1,480(6)
C13-C14	1,499(6)	C31-C32	1,483(5)
Cpl '-Fel-Cp2 '	179,2(2)		
CI-NI-C2	122,3(3)	C19-N3-C20	123,5(4)
C1-N2-C9	123,7(3)	C19~N4~C27	120,3(3)
C1N2C13	120,9(4)	C19-N4-C31	123,7(3)
C9-N2-C13	115,3(3)	C27-N4-C31	114,5(3)
S1-C1-N1	118,1(3)	S2-C19-N3	118,5(3)
SI-CI-N2	126,5(3)	S2-C19-N4	123,3(3)
NI-CI-N2	115,4(4)	N3-C19-N4	118,1(4)
01-C2-N1	122,2(4)	O2-C20-N3	121,4(4)
O1-C2-C3	122,2(4)	O2-C20-C21	123,4(4)
NI-C2-C3	115,5(3)	N3-C20-C21	115,2(4)
N2-C13-C14	112,6(3)	N4-C31-C32	115,0(3)

* Cp1 und Cp2 sind die Zentren der fünfgliedrigen Ringe C14-C18 und C32-C36.

Mittelwert der zehn $C_{Cp} - C_{Cp}$ -Bindungen.

Abb. 2. Molekülstruktur von 2a.

2.2. Reaktion von 1,l'-Bis(ethylaminomethylen)ferrocen mit Benzoylisothiocyanat

Bei der Umsetzung von 1,1'-Bis(ethylaminomethylen)ferrocen 2 mit Benzoylisothiocyanat entsteht überraschenderweise nicht der erwartete 1,1'-Ferrocendiyl-bis(N-methylen-N-ethyl-N'-benzoylthioharnstoff), sondern als Hauptprodukt 2-N-Ethylammonium-[3]-1,1'-ferrocenophan-thiocyanat 2a. Bei der säulenchromatographischen Trennung läßt sich neben nicht näher identifizierten Polymerisationsprodukten des Benzoylisothiocyanats nur N-Ethylbenzamid abtrennen, während sich das entstandene 2a nicht im verwendeten Laufmittelgemisch Essigester/n-Hexan löst.

Von Verbindung **2a** wurde ebenfalls eine Röntgenkristallstrukturanalyse durchgeführt. Abb. 2 zeigt die Molekülstruktur von **2a**.

Die Atomkoordinaten sind in Tabelle 3 und ausgewählte Abstände und Winkel in Tabelle 4 zu finden.

Die Verbindung **2a** zeichnet sich durch eine deutliche Verkippung der beiden Cp-Ringe des Ferrocenfragments gegeneinander aus. Der Winkel am Fe-Atom zu den Mittelpunkten der beiden Cp-Ringe beträgt nur 173,1°, was zu einem Winkel zwischen den Cp-Ring-Ebenen von 11,0° führt. Diese sterisch erzwungene Verkippung zeigt sich auch in deutlich verkürzten Abständen zwischen Fel und den den Substitutionsstellen benachbarten C-Atomen C4, C5, C8, C10, C11 und C14 (1,990–2,036 Å) im Vergleich zu den Abständen zu C6, C7, C12 und C13 (2,043–2,069 Å).

Die beiden Cp-Ringe sind ekliptisch angeordnet (Verdrehungswinkel 0,5°). Die Seitenketten gehen von

 Tabelle 3

 Atomkoordinaten und äquivalente isotrope Temperaturfaktoren für 2a

Atom	x	у	z	U_{eq} (Å ²) *
Fel	0,02195(3)	0,11861(3)	0,00000	0,0395(1)
S	0,0679(1)	0,6858(1)	0,1079(1)	0,0658(4)
NI	-0,0988(2)	0,3639(2)	0,0442(3)	0,0424(8)
N2	0,0815(4)	0,6669(4)	-0,1700(4)	0,0729(12)
Cl	-0,1558(4)	0,4773(3)	0,0586(4)	0,0622(13)
C2	-0,1845(4)	0,5336(4)	-0,0716(5)	0,0772(15)
C3	-0,1647(2)	0,2748(3)	-0,0241(4)	0,0451(10)
C4	-0,1276(2)	0,1533(3)	-0,0121(5)	0,0397(8)
C5	-0,1002(4)	0,0831(4)	-0,1212(5)	0,0468(13)
C6	-0,0587(4)	-0,0212(5)	0,0684(5)	0,0537(14)
C7	-0,0655(5)	-0,0152(5)	0,0746(4)	0,0573(16)
C8	-0,1065(4)	0,0911(5)	0,1107(5)	0,0492(14)
C9	0,0059(2)	0,3803(3)	-0,0168(6)	0,0469(10)
C10	0,0755(2)	0,2789(2)	-0,0057(5)	0,0398(7)
CII	0,1155(4)	0,2154(4)	-0,1169(5)	0,0468(13)
C12	0,1732(5)	0,1221(4)	-0,0635(5)	0,0531(14)
C13	0,1661(5)	0,1279(5)	0,6805(5)	0,0599(17)
C14	0,1099(4)	0,2247(4)	0,1164(5)	0,0460(12)
C15	0,0745(4)	0,6775(4)	- 0,0589(5)	0,0458(10)

 $U_{eq} = 1/3(U_{11} + U_{22} + U_{33}).$

in der Projektion senkrecht zu den Ringen übereinanderliegenden C-Atomen beider Ringe ab und schließen einen Winkel von 1,1° ein. Das Atom N1 hat eine verzerrt tetraedrische Umgebung und einen kurzen Abstand Fe1-N1 von nur 3,286Å, der durch die starre Geometrie des Moleküls erzwungen wird. Zwischen N1 und N2 des Thiocyanat-Ions liegt eine Wasserstoffbrücke N1=H1 \cdots N2[-x,1-y,1/2 + z] mit bemerkenswert kurzen Abständen (N1 \cdots N2 2,840(5) Å, H1 \cdots N2 1,91(4) Å, N1=H1 \cdots N2 166(2)°) [9], Diese Wasserstoffbrücke führt zur Ausrichtung der linearen Thiocyanatgruppe in der Kristallstruktur (S1=C15=N2 176,5°).

Die Struktur von 2a ist direkt vergleichbar mit der Struktur des analogen 2-N,N-Dimethylammonium-[3]-

Tabelle 4						
Ausgewählte	Abstände	(Å) und	Winkel	(°)	in	28

And the second designed and the second designed and the second second second second second second second second		No. () where the second state where the second state of the	100 100 100 100 100 100 100 100 100 100
Fel-Cpl *	1,640(3)	Fel-Cp2 '	1,637(3)
Fel=C _{Co}	1,990(3)-2,069(6)	Cpl -Cp2	3,271(5)
$C_{C0} = C_{C0}$	1,413(5) * *	SI-CI5	1,644(5)
NI-CI	1,519(5)	NI-C3	1,504(4)
NI-C9	1,503(5)	NI-HI	0,95(4)
N2-C15	1,102(5)	C1-C2	1,485(6)
C3-C4	1,497(4)	C9-C10	1,492(4)
Cpl ' -Fel-Cp2 '	173,1(2)		
CINI-C3	111,0(3)	CI-NI-C9	111,8(3)
C3-NI-C9	115,4(3)	CI-NI-HI	103(2)
C3-NI-HI	109(2)	C9-NI-HI	106(2)
NI-CI-C2	115,2(3)	NI-C3-C4	115.4(3)
NI-C9-C10	115,0(3)	SI-C15-N2	176.5(5)

[•] Cp1 und Cp2 sind die Zentren der fünfgliedrigen Ringe C4-C8 und C10-C14.

Mittelwert der zehn C_{Cp} - C_{Cp} -Bindungen.

1,1'-ferrocenophan-iodids, wo die Cp-Ring-Verkippung 12,2° und der Fe-N-Abstand 3,385 Å betragen [10].

2.3. Diskussion

Die unerwartete Bildung des 2-N-Ethylammonium-[3]-1,1'-ferrocenophan-thiocyanats **2a** ist nach unserer Interpretation das Resultat einer intramolekularen nukleophilen Substitution am Methylenkohlenstoff in **2**.

Eingeleitet wird die Reaktion durch den nukleophilen Angriff eines Ethylaminofragmentes am Carbonylkohlenstoff des Benzoylisothiocyanats. Die daraus resultierende positive Ladung am Aminstickstoff ermöglicht die Abspaltung des Ethylaminofragments. Intermediär wird dabei die positive Ladung auf die benachbarte Methylengruppe übertragen. Das so entstehende α -Ferrocenylmethylencarbokation ist durch übertragene Elektronendichte aus dem Eisen des Ferrocens außerordentlich stabil und gab bereits Anlaß zu zahlreichen bemerkenswerten Reaktionen [11].

Wegen der unmittelbaren räumlichen Nähe des zweiten Aminstickstoffs sollten dessen nun folgender nukleophiler Angriff am positivierten Methylenkohlenstoff und die Bindungslösung vom ersten Aminstickstoff nahezu synchron verlaufen, was das Ausmaß der Bildung des α -Ferrocenylmethylencarbokations bzw. dessen Lebensdauer einschränken dürfte. Neben der Nachbarschaft des zweiten Aminstickstoffs begünstigt auch der durch die Phanbildung verursachte Entropiegewinn einen synchronen Verlauf des hier aufgezeigten Reaktionsweges.

Die Substitution am Carbonylkohlenstoff wird durch Austritt des Thiocyanatanions unter Bildung des N-Ethylbenzamids vervollständigt.

Die Ursache für das unterschiedliche Reaktionsverhalten von 1 und 2 ist im größeren sterischen Anspruch des "Butylrestes gegenüber dem Ethylfragment zu suchen. Dieser sollte bei 1 zu einer Behinderung der für die Bildung von 2a postulierten Anordnung der Reaktionspartner führen.

Weiterhin ist eine Wirkung der – zwar geringen – Unterschiede zwischen den +I-Effekten nicht auszuschließen. Wegen des bei der ⁿButyleinheit etwas erhöhten +I-Effekts wird durch die so erhöhte Elektronendichte an den Stickstoffatomen in 1 die Spaltung der Bindung zwischen Amino- und Methylengruppe erschwert. Es erfolgt stattdessen Addition an die Isothiocyanatsequenz, wodurch 1a gebildet wird.

Die Bevorzugung der nucleophilen Substitution am Carbonylkohlenstoff bei der Reaktion von 2 mit Benzoylisothiocyanat gegenüber der sonst üblicherweise beobachteten Addition an die NCS-Einheit führt somit letztendlich zur Entstehung des energetisch offensichtlich begünstigten Ferrocenophans 2a.

3. Experimentelles

Die Schmelzpunkte sind korrigiert und wurden auf einem Schmelztisch nach Boëtius ermittelt. Die Massenspektren wurden mit einem MASSLAB VG 12-250 – Spektrometer aufgenommen. Die Aufzeichnung der IR-Spektren erfolgte mit einem SPECORD M80 von Carl Zeiß Jena (KBr-Preßlinge). Die NMR-Spektren wurden mit einem VARIAN GEMINI 200 MHz – Gerät und Tetramethylsilan als internem Standard aufgenommen.

Das Benzoylisothiocyanat wird unmittelbar vor der Reaktion destilliert. Aceton wird über Calciumchlorid getrocknet und destilliert.

3.1. 1,1'-Bis("butylaminomethylen)ferrocen 1

Die Verbindung wird in Analogie zu [12] durch Reduktion des 1,1'-Bis(N-"butylcarbamido)ferrocens mit LiAlH₄ synthetisiert.

Ausbeute: 73% d. Th.; Schmp.: Öl, erstarrt unterhalb 15°C; Gef.: C, 67,91; H, 8,80; N, 7,57; Ber.: C, 67,41; H, 9,05; N. 7,86%. MS (70 eV) m/z = 356 ([M]⁻⁺, rel. Intensität 8%), 283 ([M-(NH₂But)]⁻⁺, 100), 270 ([M-(CH₂NHBut)]⁺, 12), 254 ([NHCH-CpFeCp-CHNH]⁻⁺, 17), 213 ([Fe(Cp-CH₂)₂]⁺, 21), 135 ([Cp-CH₂NHC₃H₆]⁺, 11), 121 ([Fe-Cp]⁺, 12), 114 ([C₄H₉NHC₃H₆]⁺, 19). ¹H-NMR (199,975 MHz, CDCl₃): δ (ppm) 0,90 (t, J = 7,1 Hz, 6H, CH₃), 1,33 (q, J = 8 Hz, 4H, CH^m₂), 1,45 (q, J = 6,8 Hz, 4H, CH^m₂), 1,72 (s, 2H, NH), 2,61 (t, J = 7 Hz, 4H, CH²), 3,49 (s, 4H, Fc-CH₂-N), 4,05 ('t', J = 1,7 Hz, 4H, CpH), 4,13 ('t', J = 1,7 Hz, 4H, CpH).

3.2. 1,1'-Bis(ethylaminomethylen)ferrocen 2

Zu einer Suspension von 1,15 g (2 mmol) 1,1'-Ferrocendiyl(bis-N-methylen-bispyridinium)-chlorid-tosylat [13] und 2g Na₂CO₃ in 50 ml CH₃CN werden 1,8 g(40 mmol) Ethylamin hinzugefügt und anschließend 14 h unter Rückfluß erhitzt. Nach Abkühlen auf Raumtemperatur wird die Reaktionsmischung filtriert, die flüchtigen Bestandteile im Vakuum entfernt, das Rohprodukt in Cyclohexan/Essigester aufgenommen, über Kieselgel filtriert und mit dem gleichen Lösungsmittel nachgewaschen. Die Lösungsmittel werden im Vakuum abdestilliert und das Produkt als dunkelrotes Öl isoliert.

Ausbeute: 63% d. Th.; Gef.: C, 63,73; H, 8,51; N, 9,63; Ber.: C, 64,01; H, 8,06; N, 9,33. ¹H-NMR (CDCl₃): δ (ppm) 1,35 (t, J = 6,5 Hz, 6H, CH₃), 1,5 (br s, 2H, NH), 2,59 (q, J = 6,6 Hz, 4H, CH₂), 3,5 (s, 4H, Fc-CH₂-N), 4,05 ("t", J = 1,5 Hz, 4H, CpH), 4,14 ('t', J = 1,6 Hz, 4H, CpH).

3.3. 1,1'-Ferrocendiyl-bis(N-methylen-N-ⁿbutyl-N'-benzoylthioharnstoff) **1a**

In 30 ml Aceton werden 1,14 g (7 mmol) Benzoylisothiocyanat gelöst. Bei 40 °C erfolgt dann das Zutropfen einer Lösung von 1,35 g (3,7 mmol) 1,1'-Bis(ⁿbutylaminomethylen)ferrocen in 10 ml Aceton innerhalb von 10 Min. Es wird acht Stunden bei Raumtemperatur gerührt, wobei die Reaktionsmischung eine braune Färbung annimmt. Das Lösungsmittel wird am Rotationsverdampfer entfernt und die zurückbleibende braune, zähe Masse säulenchromatographisch an Kieselgel 60 mit dem Laufmittel Essigester/n-Hexan 1:3 gereinigt. Alternativ kann auch zweimal aus Essigester/n-Hexan umkristallisiert werden.

Ausbeute: 40% d. Th.; Schmp.: 86-88°C; Gef.: C, 64,00; H, 5,73; Fe, 9,2; N, 7,53; O, 5,43; S, 9,11; Ber.: C, 63,33; H, 6,20; Fe, 8,18; N, 8,21; O, 4,69; S, 9,39%. MS (70 eV) m/z = 615 ([M-2H₂S]⁺, rel. Intensität 33%), 565 (71), 526 (9), 310 ($[C_2H_4 = NCH_2]$ - $CpFeCpCH_2N=C_3H_6$]⁺, 15), 283 (30), 240 ([NCH₂-CpFeCpCH₂N]⁺, 53), 227 (18), 158 ([CONHCSN-But]⁺, 27), 134 (40), 105 ([PhCO]⁺, 100), 77 ([C₆H₅]⁺, 30). ¹H-NMR (199,975 MHz, CDCl₃): δ (ppm) 0,80 (t, J = 6,4 Hz, 6H, CH₃), 1,30 (m, 8H, CH₂^{'''} und CH₂^{''}), 3,35 und 3,46 sowie 3.74 und 3,87 (je s, zusammen 4H, CH'₂), 4,06 und 4,13 und 4,23 und 4,26 und 4,34 und 4,47 (je s, zusammen 8H, CpH), 4,47 und 4,60 sowie 4,98 und 5,12 (je s, zusammen 4H, Cp-CH₂-), 7,47 (m, 6H, Ph), 7,80 (s) und 7,89 (m, zusammen 4H, Ph), 8,66 und 8,71 sowie 8,80 (je s, zusammen 2H, NH). IR: ν [cm⁻¹] 3190m (NH), 2975m, 2935m, 2885m (CH), 1683s (CO), 1525s (HNCS), 1450s, 1425s (CN), 1263s (CS), 1205s, 712s, 490m.

3.4. 2-N-Ethylammonium-[3]-1,1'-ferrocenophan-thiocyanat 2a

Reaktionsführung wie unter Sektion 3.3. In Essigester/n-Hexan Lösliches wird säulenchromatographisch an Kieselgel 60 getrennt. Neben nicht charakterisierten Polymerisationsprodukten des Benzoylisothiocyanats kann dabei nur N-Ethylbenzamid isoliert werden. Der nicht im Laufmittelgemisch lösbare, kristalline, braune Feststoff wird aus Methylenchlorid umkristallisiert. Ausbeute: 31% d. Th.; Schmp.: 178 °C; Gef.: C, 57,01; H, 6,21; Fe, 16,9; N, 8,84; S, 10,48; Ber.: C, 57,34; H, 5,77; Fe, 17,78; N, 8,91; S, 10,18%. MS (70 eV) m/z = 255 ([M-Et-SCN]⁺, rel. Intensität 100%), 240 ([Fcphan-CH₂]⁺, 35), 213 ([Fc(CH₃)₂]⁺, 31), 199 ([Fc-CH₃]⁺, 5), 134 ([FeCp-CH₂]⁺, 32), 56 ([Fe]⁺, 30). ¹H-NMR (199,975 MHz, CDCl₃): δ (ppm) 1,40 (t, J = 4,4 Hz, 3H, CH₃), 3,21 (m, 2H, CH₂), 4,10

 Tabelle 5

 Kristalldaten und Details der Strukturbestimmungen von 1a und 2a

(m, 4H, Cp-CH₂), 4,27 (s, 4H, CpH), 4,40 (s, 4H, CpH), 9,49 (br, 1H, NH). IR: ν [cm⁻¹] 2985w (CH), 2647m, 2068s (SCN), 1634br (C=C), 1471m, 1434m, 1350m, 1062m, 814s, 524m.

3.5. Röntgenkristallstrukturuntersuchungen

Kristalldaten und Details der Strukturbestimmungen von 1a und 2a sind in Tabelle 5 zu finden.

	$1a \cdot CH_2Cl_2$	2a
Summenformel	$C_{36}H_{42}N_4O_2S_2Fe \cdot CH_2Cl_2$	C ₁₅ H ₁₈ N ₂ SFe
Molare Masse (g mol ⁻¹)	767,63	314,22
Kristallform, Kristallfarbe	Tafein, heilbraun	Säulen, hellbraun
Kristallsystem	triklin	orthorhombisch
Raumgruppe	Pī (No. 2)	<i>Pca</i> 2 ₁ (No. 29)
a (Å)	12,231(2)	13,041(1)
ь (Å)	12,302(2)	11,622(1)
c (Å)	14,906(3)	9,826(1)
α (°)	69,66(1)	90
B (°)	68,28(1)	90
y (°)	69.01(1)	90
V (Å ³)	1884.7(6)	1489.3(2)
Z	2	4
$\rho(\text{cate}) (\text{g cm}^{-3})$	1.353	1.401
F(000)	804	656
Diffraktometer	Stoe Stadi 4	Stoe Stadi 4
Röntgenstrahlung	$M_0 K_\alpha (\lambda = 0.71069 \text{ Å})$	$M_0 K_{02} (\lambda = 0.71069 \text{ Å})$
Monochromator	Graphit	Genhit
Kristalleröße (mm ³)	$0.61 \times 0.42 \times 0.34$	$0.46 \times 0.15 \times 0.15$
Lin, Absorptionskoeffizient μ (mm ⁻¹)	0.69	1.14
Absomtionskorrektur	Psi-scans	Psi-seans
Temperatur (K)	293(2)	293(2)
Meßbereich 20 (°)	3=63	3-60
Abiastart	w=0-scan	w= 0-scan
Gemessene Reflexe	13710	4582
Friedel-Reflexe	nicht gemessen	gemessen, nicht gemittelt
Symmetrieunabhängige Reflexe	13710	4337
davon beobachtet		
$(1 \ge 2\sigma(1))$	4414	2196
Lösungsverfahren	Direkte Methoden	Patterson-Methoden
	(shelxs-86 [14])	(SHELXS-86 [14])
Parameterverfeinerung	Anisotrope LS-Verf.	Anisotrope LS-Verf.
	aller Nicht-H-Atome,	aller Nicht-H-Atome,
	isotrope Verf. von H1 und H3	isotrope Verf. von H1
	andere H-Atome	andere H-Atome
	geometrisch berechnet	geometrisch berechnet
	(Riding) (SHELXL-93 [15])	(Riding) (sualx1.93 [15])
Anzahl der verfeinertenParameter	443	178
wR ₂	0.252 für 13710	0,094 für 4337
	symmetrieunabhängige	symmetrieunabhängige
	Reflexe	Reflexe
R ₁	0.068 für 4414	0,038 für 2196
	beobachtete Reflexe	beobachtete Reflexe
Wichtungsfaktor w	$1/[\sigma^2(F_0^2) + (0,1128P)^2]$	$1/[\sigma^2(F_0^2) + (0.0343P)^2]$
$P = [\max(F_0^2, 0) + 2F_c^2]/3$	• · •	· · · · · · · ·
Flack-Parameter		0,46(3)
Restelektronendichte (e Å - 3)	1.02 / - 0.91	0.29 / - 0.25

Geeignete Kristalle von **1a** wurden durch Umkristallisation aus Methylenchlorid erhalten, wobei pro Formeleinheit ein Molekül Methylenchlorid in die Kristallstruktur eingebaut wurde. Dieses Methylenchlorid-Molekül ist leicht fehlgeordnet, was sich in Problemen bei der Lokalisierung des Chloratoms Cl2 und in beträchtlichen Restelektronendichten in dessen Nähe bemerkbar macht. Die Einführung von Splitpositionen verbesserte das Ergebnis jedoch nicht signifikant, so daß davon Abstand genommen wurde.

2a wurde durch Überschichten einer Methylenchloridlösung mit n-Hexan in geeigneter Qualität erhalten.

Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummern CSD-405230 und CSD-405231 angefordert werden.

Dank

Die Autoren danken der Deutschen Forschungsgemeinschaft für finanzielle Unterstützung (Be 1436/7-1) und Herrn Prof. Dr. S. Hauptmann, Institut für Organische Chemie der Universität Leipzig, für hilfreiche Diskussionen. Der Chemische Betriebe PLUTO GmbH sei für die Spende von Ferrocen gedankt.

Literaturverzeichnis

- T.M. Miller, K.J. Ahmed and M.S. Wrighton, *Inorg. Chem.*, 28 (1989) 2347.
- [2] C.E.L. Headford, R. Mason, P.R. Ranatunge-Bandarage, B.H. Robinson and J. Simpson, J. Chem. Soc., Chem. Commun., (1990) 601.
- [3] B. McCulloch, D.L. Ward, J.D. Woolins and C.H. Brubaker, Organometallics, 4 (1985) 1425.
- [4] J.C. Calabrese, L.-T. Cheng, J.C. Green, S.R. Marder and W. Tam, J. Am. Chem. Soc., 113 (1991) 7227.
- [5] O. Seidelmann, L. Beyer and R. Richter, Z. Naturforsch., 50b (1995) 1679.
- [6] O. Seidelmann, L. Beyer, G. Zdobinsky, R. Kirmse and R. Richter, Z. Anorg. Allg. Chem., 622 (1996) 692.
- [7] H. Hartmann and I. Reuther, J. Prakt. Chem., 315 (1973) 144.
- [8] R. Richter, Dissertation B, Univ. Leipzig, 1987, S. 40.
- [9] J.E. Huheey, Anorganische Chemie, Walter de Gruyter, Berlin, 1988, S. 288.
- [10] H. Plenio, J. Yang, R. Diodone and J. Heinze, *Inorg. Chem.*, 33 (1994) 4098.
- [11] W.E. Watts, J. Organomet. Chem. Libr., 7 (1979) 399.
- [12] V.I. Boev and A.V. Dombrovskii, Zh. Obsch. Khim., 47 (1977) 1892.
- [13] V.P. Tverdokhlebov, I.V. Tselinskii, B.V. Gidaspov and G.Y. Chikisheva, J. Org. Chem. USSR, 12 (1976) 2268.
- [14] G.M. Sheldrick, SHELXS-86, Program for Solution of Crystal Structures from Diffraction Data, Univ. Göttingen, Germany, 1986.
- [15] G.M. Sheldrick, SHELXL-93, Program for Crystal Structure Refinement, Univ. Göttingen, Germany, 1993.